Компьютерные уроки для начинающих
  • Главная
  • ВКонтакте
  • Понятие ос принципы построения назначение. Основные концепции построения ОС. Архитектура ОС. Ядро и вспомогательные модули ОС

Понятие ос принципы построения назначение. Основные концепции построения ОС. Архитектура ОС. Ядро и вспомогательные модули ОС

Глава 9. Архитектура операционных систем

Как комплекс системных управляющих и обрабатывающих программ, операционная система представляет собой очень сложный конгломерат взаимо-связанных программных модулей и структур данных, которые должны обеспечи­вать надежное и эффективное выполнение вычислений. Большинство потенци­альных возможностей операционной системы, ее технические и потребительские параметры - все это во многом определяется архитектурой системы - ее структу­рой и основными принципами построения.

Очевидно, что системы, ориентированные на диалог, должны иметь иные страте­гию обслуживания и дисциплину диспетчеризации, чем системы пакетной обра­ботки. Диалоговое взаимодействие предполагает реализацию развитой интерфей­сной подсистемы, обеспечивающей взаимодействие пользователя с компьютером. Это отличие сказывается и на особенностях построения систем. Очевидно, что для диалоговых операционных систем необходимо предусмотреть множество механиз­мов, которые позволят пользователям эффективно управлять своими вычислени­ями.

Аналогично, и системы, реализующие мультизадачный режим работы, отличают­ся по своему строению от однозадачных систем. Если система допускает работу нескольких пользователей, то желательно иметь достаточно развитую подсистему информационной безопасности. А это, в свою очередь, налагает определенные тре­бования и на идеологию построения операционной системы, и на выбор конкрет­ных механизмов, помогающих реализовать защиту информационных ресурсов и ввести ограничения на доступ к другим видам ресурсов. Поскольку операционные системы помимо функций организации вычислений и организации интерфейса пользователя предоставляют интерфейсы для взаимодействия программ с опера­ционной системой, мы в этой главе рассмотрим и интерфейсы прикладного про­граммирования.

Основные принципы построения операционных систем

Среди множества принципов построения операционных систем перечислим несколь­ко наиболее важных: принцип модульности, принцип виртуализации, принципы мобильности (переносимости) и совместимости, принцип открытости, принцип ге­нерации операционной системы из программных компонентов и некоторые другие.

Принцип модульности

Операционная система строится из множества программных модулей. Под моду­лем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает легкий способ его замены другим при наличии заданных интерфейсов. Способы обособления составных частей операционной системы в отдельные модули могут быть существенно разными, но чаще всего разделение происходит именно по функциональному признаку. В значительной степени разделение системы на модули определяется используемым методом проектирования системы (снизу вверх или наоборот).

Особо важное значение при построении операционных систем имеют привилеги­рованные, повторно входимые и реентерабельные модули, ибо они позволяют бо­лее эффективно использовать ресурсы вычислительной системы. Как мы уже зна­ем (см. главу 1), свойство реентерабельности может быть достигнуто различными способами, но чаще всего используются механизмы динамического выделения па­мяти под переменные для нового вычислительного процесса (задачи). В некото­рых системах реентерабельность программы получают автоматически. Этого можно достичь благодаря неизменяемости кодовых частей программ при исполнении, а также автоматическому распределению регистров, автоматическому отделению кодовых частей программ от данных и помещению последних в системную область памяти, которая распределяется по запросам от выполняющихся задач. Естествен­но, что для этого необходима соответствующая аппаратная поддержка. В других случаях это достигается программистами за счет использования специальных си­стемных модулей.

Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект от его использования достижим в случае, когда прин­цип распространен одновременно на операционную систему, прикладные програм­мы и аппаратуру. Принцип модульности является одним из основных в UNIX-системах.

Во всех операционных системах можно выделить некоторую часть наиболее важ­ных управляющих модулей, которые должны постоянно находиться в оператив­ной памяти для более скорой реакции системы на возникающие события и более эффективной организации вычислительных процессов. Эти модули вместе с не­которыми системными структурами данных, необходимыми, для функционирова­ния операционной системы, образуют так называемое ядро операционной систе­мы, так как это действительно ее самая главная, центральная часть, основа системы.

При формировании состава ядра требуется удовлетворить двум противоречивым требованиям. В состав ядра должны войти наиболее часто используемые систем­ные модули. Количество модулей должно быть таким, чтобы объем памяти, зани­маемый ядром, был не слишком большим. В его состав, как правило, входят мо­дули по управлению системой прерываний, средства по переводу программ из состояния счета в состояние ожидания, готовности и обратно, средства по распре­делению основных ресурсов, таких как оперативная память и процессор. В главе 1 мы уже упоминали, что операционные системы могут быть микроядерными и макроядерными (монолитными). В микроядсрных операционных системах само ядро очень компактно, а остальные модули вызываются из ядра как сервисные. При этом сервисные модули могут размещаться и в оперативной памяти. В противополож­ность микроядерным в макроядерных операционных системах главная супервизорная часть включает в себя большое количество модулей. Более подробно о мик­роядерных и макроядерных операционных системах см. далее.

Помимо программных модулей, входящих в состав ядра и постоянно располагаю­щихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных. Транзитные программные мо­дули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями. В качестве синонима термина «транзитный» можно использовать тер­мин «диск-резидентный».

Принцип особого режима работы

Ядро операционной системы и низкоуровневые драйверы, управляющие работой каналов и устройств ввода-вывода, должны работать в специальном режиме рабо­ты процессора. Это необходимо по нескольким причинам. Во-первых, введение специального режима работы процессора, в котором должен исполняться только код операционной системы, позволяет существенно повысить надежность выпол­нения вычислений. Это касается выполнения как управляющих функций самой операционной системы, так и прикладных задач пользователей. Категорически нельзя допускать, чтобы какая-нибудь прикладная программа могла вмешиваться (преднамеренно или в связи с появлением ошибок вычислений) в вычисления, связанные с супервизорной частью операционной системы. Во-вторых, ряд функ­ций должен выполняться исключительно централизованно, под управлением опе­рационной системы, К этим функциям мы, прежде всего, должны отнести функции, связанные с управлением процессами ввода-вывода данных. Вспомните основные принципы организации ввода-вывода: все операции ввода-вывода дан­ных объявляются привилегированными. Это легче всего сделать, если процессор может работать, как минимум, в двух режимах: привилегированном (режим супервизора) и пользовательском. В первом режиме процессор может выполнять все команды, тогда как в пользовательском набор разрешенных команд ограничен. Естественно, что помимо запрета на выполнение команд ввода-вывода в пользова­тельском режиме работы процессор не должен позволять обращаться к своим спе­циальным системным регистрам - эти регистры должны быть доступны только в привилегированном режиме, то есть исключительно супервизорному коду самой операционной системы. Попытка выполнить запрещенную команду или обратиться к запрещенному регистру должна вызывать прерывание (исключение), и централь­ный процессор должен быть предоставлен супервизорной части операционной системы для управления выполняющимися вычислениями.

Поскольку любая программа требует операций ввода-вывода, прикладные програм­мы для выполнения этих (и некоторых других) операций обращаются к суперви­зорной части операционной системы (модуль супервизора иногда называют су­первизором задач) с соответствующим запросом. При этом процессор должен переключиться в привилегированный режим работы. Чтобы программы не могли произвольным образом обращаться к супервизорному коду, который работает в привилегированном режиме, им предоставляется возможность обращаться к нему в строгом соответствии с принятыми правилами. Каждый запрос имеет свой иден­тификатор и должен сопровождаться соответствуюшим количеством параметров, уточняющих запрашиваемую у операционной системы функцию (операцию). По­этому супервизор задач при получении запроса сначала его тщательно проверяет. Если запрос корректный и программа имеет право с ним обращаться, то запрос на выполнение операции, как правило, передается соответствующему модулю опера­ционной системы. Множество запросов к операционной системе образует соот­ветствующий системный интерфейс прикладного программирования (Application Program Interface, API).

Принцип виртуализации

В наше время уже не требуется пояснять значение слова «виртуальный», ибо о виртуальных мирах, о виртуальной реальности знают даже дети. Принцип виртуа­лизации нынче используется практически в любой операционной системе. Вирту­ализация ресурсов позволяет не только организовать разделение тех ресурсов меж­ду вычислительными процессами, которые не должны разделяться. Виртуализация позволяет абстрагироваться от конкретных ресурсов, максимально обобщить их свойства и работать с некоторой абстракцией, вобравшей в себя наиболее значи­мые особенности. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распределителей ресурсов (мо­ниторов) и использовать единую централизованную схему распределения ресурсов.

Следует заметить, что сама операционная система существенно изменяет наши представления о компьютере. Она виртуализирует его, добавляя ему функциональности, удобства управления, предоставляя средства организации параллельных вычислений и т. д. Именно благодаря операционной системе мы воспринимаем компьютер совершенно иначе, чем без нее.

Наиболее законченным и естественным проявлением концепции виртуальности является понятие виртуальной машины. По сути, любая операционная система, являясь средством распределения ресурсов и организуя по одределенным прави­лам управление процессами, скрывает от пользователя и его приложений реаль­ные аппаратные и иные ресурсы, заменяя их некоторой абстракцией. В результате пользователи видят и используют виртуальную машину как некое устройство, способное воспринимать их программы, написанные на определенном языке програм­мирования, выполнять их и выдавать результаты на виртуальные устройства, ко­торые связаны с реально существующими в данной вычислительной системе. При таком языковом представлении пользователя совершенно не интересует реальная конфигурация вычислительной системы, способы эффективного использования ее компонентов и подсистем. Он мыслит и работает с машиной в терминах исполь­зуемого им языка.

Чаше виртуальная машина, предоставляемая пользователю, воспроизводит архи­тектуру реальной машины, но архитектурные элементы в таком представлении выступают с новыми или улучшенными характеристиками, часто упрощающими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеализированную» по архитектурным характеристикам машину в следующем составе.


  • Единообразная по логике работы память (виртуальная) достаточного для вы­полнения приложений объема. Организация работы с информацией в такой памяти производится в терминах работы с сегментами данных на уровне вы­бранного пользователем языка программирования.

  • Произвольное количество процессоров (виртуальных), способных работать параллельно и взаимодействовать во время работы. Способы управления про­цессорами, в том числе синхронизация и информационные взаимодействия, реализованы и доступны пользователям с уровня используемого языка в тер­минах управления процессами.

  • Произвольное количество внешних устройств (виртуальных), способных работать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуального процессора, которые инициируют работу этих устройств. Информация, передаваемая или хранимая на виртуальных устройствах, не ограничена допустимыми размерами. Доступ к такой информации осуществляется на основе либо последовательного, либо прямого способа доступа в терминах соответствующей системы управления файлами. Предусмотрено расширение информационных структур данных, хранимых на виртуальных устройствах.
Степень приближения к «идеальной» виртуальной машине может быть большей или меньшей в каждом конкретном случае. Чем больше виртуальная машина, реа­лизуемая средствами операционной системы на базе конкретной аппаратуры ком­пьютера, приближена к «идеальной» по характеристикам машине и, следователь­но, чем больше ее архитектурно-логические характеристики отличны от реально существующих, тем больше степень ее виртуальности.

Одним из важнейших результатов принципа виртуализации является возможность организации выполнения в операционной системе приложений, разработанных для другой операционной системы, имеющей совсем другой интерфейс прикладного программирования. Другими словами, речь идет об организации нескольких опе­рационных сред, о чем мы уже говорили в главе 1. Реализация этого принципа по­зволяет операционной системе иметь очень сильное преимущество перед другими операционными системами, не имеющими такой возможности. Примером реали­зации принципа виртуализации может служить VDM-машина (Virtual DOS Machine) - защищенная подсистема, предоставляющая полную среду типа MS DOS и консоль для выполнения DOS -приложений. Как правило, параллельно может выполняться практически произвольное число DOS-приложений, каждое в своей VDM-машине. Такие VDM-машины имеются и в операционных системах Windows 1 компании Microsoft, в OS/2, в Linux.

Одним из аспектов общего принципа виртуализации является независимость про­грамм от внешних устройств, хотя иногда эту особенность выделяют особенно и на­зывают принципом. Она заключается в том, что связь программ с конкретными устройствами производится не в процессе создания программы, а в период плани­рования ее исполнения. В результате перекомпиляция при работе программы с но­вым устройством, на котором располагаются данные, не требуется. Этот принцип позволяет одинаково осуществлять операции управления внешними устройствами независимо от их конкретных физических характеристик. Например, программе, содержащей операции обработки последовательного набора данных, безразлично, на каком носителе эти данные будут располагаться. Смена носителя и данных, раз­мещаемых на них (при неизменности структурных характеристик данных), не при­внесет каких-либо изменений в программу, если в системе реализован принцип независимости программ от внешних устройств. Независимость программ от вне­шних устройств реализуется в подавляющем большинстве операционных систем общего применения. Ярким примером такого подхода являются операционные си­стемы с общим названием UNIX. Реализована такая независимость и в большин­стве современных операционных систем для персональных компьютеров.

Например, в системах Windows все аппаратные ресурсы полностью виртуализи-рованы, и прямой доступ к ним со стороны прикладных (и системных обрабатыва­ющих) программ однозначно запрещен. В системах Windows NT/2000/XP даже были введены понятия HAL (Hardware Abstraction Layer- уровень абстрагирова­ния аппаратуры) и HEL (Hardware Emulation Layer- уровень эмуляции аппара­туры), и этот шаг очень помогает в реализации идей переносимости (мобильноcти) операционной системы.

Принцип мобильности

Мобильность, или переносимость, означает возможность и легкость переноса операционной системы на другую аппаратную платформу. Мобильная операционная система обычно разрабатывается с помощью специального языка высокого уров­ня, предназначенного для создания системного программного обеспечения. Такой язык помимо поддержки высокоуровневых операторов, типов данных и модуль­ных конструкций должен позволять непосредственно использовать аппаратные возможности и особенности процессора. Кроме этого, такой язык должен быть широко распространенным и реализованным в виде систем программирования, которые либо уже имеются на целевой платформе, либо позволяют получать про­граммные коды для целевого компьютера. Другими словами, этот язык системно­го программирования должен быть достаточно распространенным и технологич­ным. Одним из таких языков является язык С. В последние годы язык С++ также стал использоваться для этих целей, поскольку идеи объектно-ориентированного программирования оказались плодотворными не только для прикладного, но и для системного программирования. Большинство современных операционных систем были созданы именно как объектно-ориентированные.

Обеспечить переносимость операционной системы достаточно сложно. Дело в том, что архитектуры разных процессоров могут очень сильно различаться. У них мо­жет быть разное количество рабочих регистров, причем часть регистров может оказаться контекстно-зависимыми, как это имеет место в процессорах с архи­тектурой iа32. Различия могут быть и в реализации адресации. Более того, для операционной системы важной является не только архитектура центрального процессора, но и архитектура компьютера в целом, ибо важнейшую роль играет подсистема ввода-вывода, а она строится на дополнительных (по отношению к цен­тральному процессору) аппаратных средствах. В таких условиях сделать эффек­тивным код операционной системы при условии создания его на языке типа С/С++ невозможно. Поэтому часть программных модулей, которые более всего зависят от аппаратных особенностей процессора, от типов поддерживаемых данных, спо­собов адресации, системы команд и других важнейших моментов, разрабатывает­ся на языке ассемблера. Очевидно, что модули, написанные на языке ассемблера, при переносе операционной системы на процессор с иной архитектурой должны быть написаны заново. Зато остальная (большая) часть кода операционной систе­мы может быть просто перекомпилирована под целевой процессор. Именно по это­му принципу в свое время была создана операционная система UNIX. Относи­тельная легкость переноса этой системы на другие компьютеры позволила сделать ее одной из самых распространенных. Для обеспечения мобильности был даже создан стандарт на интерфейс прикладного программирования, названный POSIX (Portable Operating System Interface for Computers Environments - интерфейс при­кладного программирования для переносимых операционных систем).

К сожалению, на самом деле далеко не все операционные системы семейства UNIX допускают относительно простую переносимость созданного для них программ­ного обеспечения, хотя сами они и поддерживают такую переносимость. Основ­ная причина тому - отход от единого стандарта API - POSIX. Очевидно, что пла­той за универсальность, прежде всего, является потеря производительности при выполнении операций ввода-вывода и вычислений, связанных с этими операция­ми. Поэтому ряд разработчиков шли и до сих пор идут на отказ от принципа мо­бильности, поскольку не всегда следование этому принципу экономически оправ­дано.

Если при разработке операционной системы сразу не следовать принципу мобиль­ности, то в последующем очень трудно обеспечить перенос на другую платформу как самой операционной системы, так и программного обеспечения, созданного для нее. Например, компания IBM потратила долгие годы на перенос своей опера­ционной системы OS/2, созданной для персональных компьютеров с процессорами архитектуры iа32, на платформу PowerPC. Но даже если изначально в специ­фикации на операционную систему заложить требование легкой переносимости, это не значит, что его в последующем будет просто реализовать. Подтверждением тому является тот же проект OS/2-Windows NT. Как известно, проект Windows NT обеспечивал работу этой операционной системы на процессорах с архитекту­рой iа32, MIPS, Alpha (DEC), PowerPC. Однако в последующем трудности с реа­лизацией этого принципа привели к тому, что нынешние версии операционных систем класса Windows NT (Windows 2000/XP) уже создаются только для про­цессоров с архитектурой iа32 и не поддерживают MIPS, Alpha и PowerPC.

Принцип совместимости

Одним из аспектов совместимости является способность операционной системы выполнять программы, написанные для других систем или для более ранних вер­сий данной операционной системы, а также для другой аппаратной платформы.

Необходимо разделять вопросы двоичной совместимости и совместимости на уров­не исходных текстов приложений. Двоичная совместимость достигается в том слу­чае, когда можно взять исполняемую программу и запустить ее на выполнение на другой операционной системе. Для этого необходимы: совместимость на уровне команд процессора, совместимость па уровне системных вызовов и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего транслятора в составе системного программного обеспечения, а также совмести­мости на уровне библиотек и системных вызовов. При этом необходима переком­пиляция имеющихся исходных текстов в новый выполняемый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, основан­ными на разных архитектурах. Для того чтобы один компьютер выполнял программы другого (например, программу для персонального компьютера типа IBM PC хочется выполнять на компьютере типа Mac от фирмы Apple), этот компьютер должен работать с машинными командами, которые ему изначально непонятны. Например, процессор типа Power PC на Mac должен исполнять двоичный код, пред­назначенный для процессора i80x86. Процессор 80x86 имеет свои собственные де­шифратор команд, регистры и внутреннюю архитектуру. Процессор Power PC имеет другую архитектуру, он не понимает непосредственно двоичный код 80x86, поэто­му должен выбрать каждую команду, декодировать ее, чтобы определить, для чего она предназначена, а затем выполнить эквивалентную подпрограмму, написанную для Power PC. К тому же у Power PC нет в точности таких же регистров, флагов и внутреннего арифметико-логического устройства, как в 80x86, поэтому он должен эмулировать все эти элементы с использованием своих регистров или памяти. И он должен тщательно воспроизводить результаты каждой команды, что требует спе­циально написанных подпрограмм для Power PC, гарантирующих, что состояние эмулируемых регистров и флагов после выполнения каждой команды будет в точ­ности таким же, как и на реальном процессоре 80x86. Выходом в таких случаях является использование так называемых прикладных сред, или эмуляторов. Учи­тывая, что основную часть программы, как правило, составляют вызовы библиотечных функций, прикладная среда имитирует библиотечные функции целиком, используя заранее написанную библиотеку функций аналогичного назначения, а остальные команды эмулирует каждую по отдельности.

Одним из средств обеспечения совместимости программных и пользовательских интерфейсов является соответствие стандартам POSIX. Эти стандарты позволяют создавать программы в стиле UNIX, которые впоследствии могут легко переноситься из одной системы в другую.

Одним из наиболее важных принципов построения ОС является принцип модульности . Под модулемоперационной системы в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает возможность относительно легкой замены его на другой при наличии заданных интерфейсов. Способы обособления составных частей ОС в отдельные модули могут существенно различаться, но чаще всего разделение происходит именно по функциональному признаку. В зна­чительной степени разделение системы на модули определяется используемым методом проектирования ОС (снизу вверх или наоборот). Особо важное значение при построении ОС имеют реентерабельные программные модули, так как они позволяют более эффективно использовать ресурсы вычислительной системы (под реентерабельностью понимают свойство программы, позволяющее одновременно выполнять эту программу нескольким процессам). Принцип модульности отражает технологические и эксплуатационные свойства системы. Наибольший эффект от его использования достижим в случае, когда принцип распространен одновременно на операционную систему, прикладные программы и аппаратуру.

В ОС выделяется некоторая часть важных программных модулей, которые должны постоянно находиться в оперативной памяти для более эффективной организации вычислительного процесса. Эту часть в ОС называют ядром операционной системы , так как это действительно основа системы

Архитектурные особенности проектирования операционных систем

В общем случае «структура» монолитной ОС представляет собой как раз отсутствие структуры. Такая ОС написана как набор процедур, каждая из которых может вызывать другие, когда ей это нужно. При использовании этой техники каждая процедура системы имеет хорошо определенный интерфейс в терминах параметров и результатов, и каждая может вызвать любую другую для выполнения некоторой нужной для нее полезной работы. Для построения монолитной системы необходимо скомпилировать все отдельные процедуры, а затем связать их вместе в единый объектный файл с помощью компоновщика. Каждая процедура видит любую другую процедуру (в отличие от структуры, содержащей модули, в которой большая часть информации является локальной для модуля, и процедуры модуля можно вызвать только через специально определенные точки входа). Однако даже такие монолитные системы могут быть «немного» структурированными. При обращении к системным вызовам, поддерживаемым ОС, параметры помещаются в строго определенные места, такие, как регистры или стек, а затем выполняется специальная команда прерывания, известная как вызов ядра или вызов супервизора. Эта команда переключает машину из режима пользователя в режим ядра, называемый также режимом супервизора, и передает управление ОС. Затем ОС проверяет параметры вызова для того, чтобы определить, какой системный вызов должен быть выполнен. После этого ОС индексирует таблицу, содержащую ссылки на процедуры, и вызывает соответствующую процедуру. Такая организация ОС предполагает следующую структуру:

1. Главная программа, которая вызывает требуемые сервисные процедуры;

2. Набор сервисных процедур, реализующих системные вызовы;

3. Набор утилит, обслуживающих сервисные процедуры.

Управление памятью

Распределению подлежит вся оперативная память, не занятая операционной системой. Обычно ОС располагается в самых младших адресах, однако может занимать и старшие адреса. Функциями ОС по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов, вытеснение процессов из оперативной памяти на диск (когда размеры основной памяти не достаточны для размещения в ней всех процессов) и возвращение их в оперативную память (когда в ней освобождается место), а также настройка адресов программы на конкретную область физической памяти.

Для идентификации команд и переменных используются символьные имена (метки), виртуальные адреса и физические адреса.

Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

Виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Так как во время трансляции в общем случае неизвестно, в какое место оперативной памяти будет загружен процесс, то транслятор присваивает командам и переменным виртуальные (условные) адреса, обычно считая по умолчанию, что процесс будет размещен, начиная с нулевого адреса. Совокупность виртуальных адресов процесса называется виртуальным адресным пространством . Каждый процесс имеет собственное виртуальное адресное пространство. Максимальный размер виртуального адресного пространства ограничивается разрядностью адреса, присущей данной архитектуре ВМ, и, как правило, не совпадает с объемом физической памяти, имеющимся в машине.

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены команды и переменные. Переход от виртуальных адресов к физическим может осуществляться двумя способами.

Управление вводом-выводом

ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью машины. В целях развития интерфейс должен быть одинаковым для всех типов устройств (принцип независимости от устройств).

Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства .

Блок-ориентированные устройства ввода-вывода хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство – диск.

Байт-ориентированные устройства ввода-вывода не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются мониторы, принтеры, сетевые адаптеры. Однако некоторые внешние устройства не относятся ни к одному классу, например, часы, которые, с одной стороны, не адресуемы, а с другой стороны, не порождают потока байтов. Это устройство только выдает сигнал прерывания в некоторые моменты времени.

Любое внешнее устройство обычно состоит из механического и электронного компонента. Электронный компонент называют контроллером устройства или адаптером . Механический компонент представляет собственно устройство. Некоторые контроллеры могут управлять несколькими устройствами. Если интерфейс между контроллером и устройством стандартизован, то независимые производители могут выпускать совместимые как контроллеры, так и устройства.

ОС обычно имеет дело не с устройством, а с его контроллером. Контроллер, как правило, выполняет простые функции, например, преобразует поток бит в блоки (состоящие из байт), осуществляют контроль и исправление ошибок. Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. В некоторых ВМ эти регистры являются частью физического адресного пространства. В таких ВМ нет специальных операций ввода-вывода. В других машинах адреса регистров ввода-вывода, называемых часто портами , образуют собственное адресное пространство за счет введения специальных операций ввода-вывода.

ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.

Основная идея организации программного обеспечения ввода-вывода состоит в разбиении его на несколько уровней , причем нижние уровни обеспечивают экранирование особенностей аппаратуры от верхних, а те, в свою очередь, обеспечивают удобный интерфейс для пользователей. Ключевым принципом является независимость от устройств ввода-вывода. Вид программы не должен зависеть от того, читает ли она данные с гибкого диска или с жесткого диска.

Очень близкой к идее независимости от устройств является идея единообразного именования , то есть для именования устройств должны быть приняты единые правила.

Файлы и файловые системы

Таким об­разом, файловая система – это набор спецификаций и соответствующее им про­граммное обеспечение, которые отвечают за создание, уничтожение, организацию, чтение, запись, модификацию и перемещение файловой информации, а также за управление доступом к файлам и за управление ресурсами, которые используют­ся файлами. Именно файловая система определяет способ организации данных на диске или на каком-нибудь ином носителе данных.

Следует различать файловую систему и систе­му управления файлами . Система управления файлами является основной подсистемой в абсолютном большинстве современных ОС (хотя в принципе можно обхо­диться и без нее). Во-первых, через систему управления файлами связываются по данным все системные обрабатывающие программы. Во-вторых, с помощью этой системы решаются проблемы централизованного распределения дискового про­странства и управления данными. В-третьих, благодаря использованию той или иной системы управления файлами пользователям предоставляются следующие возможности:

– создание, удаление, переименование (и другие операции) именованных набо­ров данных (именованных файлов) из своих программ или посредством спе­циальных управляющих программ, реализующих функции интерфейса пользо­вателя с его данными и активно использующих систему управления файлами;

– работа с не дисковыми периферийными устройствами как с файлами;

– обмен данными между файлами, между устройствами, между файлом и уст­ройством (и наоборот);

– работа с файлами с помощью обращений к программным модулям системы управления файлами;

– защита файлов от несанкционированного доступа.

В некоторых ОС может быть несколько систем управления файлами, что обеспе­чивает им возможность работать с несколькими файловыми системами. Очевид­но, что системы управления файлами, будучи компонентом ОС, не являются не­зависимыми от этой ОС, поскольку они активно используют соответствующие вызовы прикладного программного интерфейса API (application program interface) . Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности, на диске. Файл состоит из физических записей – блоков . Блок (как уже было отмечено выше) – наименьшая единица данных, которой внешнее устройство обменивается с оперативной памятью. В некоторых ОС такая наименьшая единица обмена называется кластером . При этом кластер может состоять из нескольких блоков.

Каждая ОС является сложной и уникальной программной системой. Однако в их основу положены общие принципы перечисленные ниже.

Принцип модульности. Предусматривает построение ОС из функционально законченных модулей. Выполнение модулей ОС не должно зависеть от их расположения в памяти. Перед размещением модуля в памяти производится его настройка под фактические адреса. Существенную роль при этом играют способы адресации процессора и алгоритм распределения памяти, реализованный в ОС.

Принцип функциональной избирательности . В ОС выделяются наиболее важные и часто используемые модули, которые являются основой системы. Эту часть называют ядром ОС. Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода, системой прерываний. Модули ядра постоянно находятся в оперативной памяти и называются резидентными. Остальные системные модули хранятся на жестком диске и называются транзитными .

Принцип генерируемости . Позволяет настроить ядро и остальные компоненты ОС исходя из конкретной конфигурации ЭВМ и круга решаемых задач. Процедура настройки называется инсталляцией.

Принцип функциональной избыточности . Обеспечивает возможность выполнения одной и той же операции различными способами и средствами, что определяет универсальность и гибкость ОС.

Принцип независимости программ от внешних устройств . Позволяет осуществлять обмен данными и управление внешними устройствами независимо от их характеристик. Это достигается за счет того, что связь программ с конкретными устройствами производится не на уровне трансляции программы, а в период ее исполнения. Например, программе, выполняющей обработку последовательного набора данных, безразлично, какой носитель будет использоваться для их хранения. Непосредственное управление обменом данных между системой и внешними устройствами выполняют специальные программы, называемые драйверами .

Принцип совместимости . ОС должна иметь средства для выполнения прикладных программ, написанных для других ОС. Следует различать совместимость на уровне двоичных кодов и на уровне исходных текстов. Понятие совместимости включает также поддержку пользовательских интерфейсов других ОС.

Принцип расширяемости (открытой и наращиваемой ОС ). Аппаратные средства компьютера устаревают за несколько лет, а ОС может использоваться десятилетиями (например, ОС UNIX ). Поэтому необходимо чтобы в ОС можно было легко внести изменения и дополнения, не нарушая ее целостности. Изменения ОС обычно заключаются в приобретении ею новых свойств, например поддержке новых типов внешних устройств или новых сетевых технологий. Расширяемость достигается за счет модульной структуры ОС. Взаимодействие модулей осуществляется только через функциональный интерфейс.

Принцип переносимости (мобильности) . Код ОС должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа на аппаратную платформу другого типа. Аппаратные платформы различаются не только типом процессора, но и архитектурой всего компьютера. переносимые ОС имеют несколько вариантов реализации для разных платформ, т. е. являются многоплатформенными.

Принцип надежности и отказоустойчивости . Система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов. Ее действия должны быть всегда предсказуемыми, а приложения не должны иметь возможности наносить вред ОС. Важно, включает ли ОС программную поддержку аппаратных средств обеспечения отказоустойчивости, таких как дисковые массивы (RAID ) или источники бесперебойного питания.

Принцип максимальной производительности . ОС должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа. На производительность ОС влияет архитектура ОС, многообразие функций, качество программирования кода, аппаратная платформа, на которой работает ОС.

Принцип обеспечения безопасности вычислений . Операционная система должна защищать данные и другие ресурсы ВС от несанкционированного доступа, обладать средствами защиты ресурсов одних пользователей от других пользователей.

Предмет: Операционные системы.
Вопрос: №8

—————————————————————

Принципы построения ОС:

1.) Принцип модульности – под модулем в общем случае понимают функционально законченный элемент системы, выполненный в соответствии с принятыми межмодульными интерфейсами. По своему определению модуль предполагает возможность легкой замены его на другой при наличии заданных интерфейсов. В значительной степени разделение системы на модули определяется используемым методом проектирования ОС (снизу вверх или наоборот).

Особое значение при построение ОС имеют привилегированные, повторно входимые и реентерабельные модули (реентабель-ность – дословно повторновходимость; специальный термин для обозначения работоспособности программы; свойство программы корректно выполняться при рекурсивном (возвращаемом) вызове из прерывания).

Наибольший эффект от использования данного принципа достижим в случае одновременного распространения данного принципа на ОС, прикладные программы и аппаратуру.

2.) Принцип функциональной избиратель-ности – в ОС выделяется некоторая часть важных модулей, которые должны постоянно находится в оперативной памяти для более эффективной организации вычислительного процесса. Эту часть в ОС называют ядром, так как это – основа системы. При формировании состава ядра приходится учитывать два противоречивых требования. С одной стороны, в состав ядра должны войти наиболее часто используемые системные модули, с другой – количество модулей должно быть таковым, чтобы объем памяти, занимаемый ядром, не был слишком большим. Помимо программных модулей, входящих в состав ядра и постоянно располагающихся в оперативной памяти, может быть много других системных программных модулей, которые получают название транзитных . Транзитные программные модули загружаются в оперативную память только при необходимости и в случае отсутствия свободного пространства могут быть замещены другими транзитными модулями.

3.) Принцип генерируемости ОС: суть принципа состоит в организации (выборе) такого способа исходного представления центральной системной управляющей программы ОС (ядра и постоянно находящихся в оперативной памяти основных компонентов), который позволял настраивать эту системную супервизорную часть исходя из конкретной конфигурации конкретного вычислительного комплекса и круга решаемых задач. Эта процедура проводится редко перед достаточно протяженным периодом эксплуатации ОС. Процесс генерации осуществляется с помощью специальной программы-генера-тора и соответствующего входного языка для этой программы, позволяющего описывать программные возможности системы и конфигурацию машины. В результате генерации получается полная версия ОС. Сгенерированная версия ОС представляет собой совокупность системных наборов модулей и данных.

4.) Принцип функциональной избыточности: Этот принцип учитывает возможность проведения одной и той же работы различными средствами. В состав ОС может входить несколько типов мониторов (модулей супервизора, управляющих тем или другим видом ресурса), различные средства организации коммуникаций между вычислительными процессами. Наличие нескольких типов мониторов, нескольких систем управления файлами позволяет пользователям быстро и наиболее адекватно адаптировать ОС к определенной конфигурации вычислительной системы, обеспечивать максимально эффективную загрузку технических средств при решении конкретного класса задач, получать максимальную производительность при решении заданного класса задач.

5.) Принцип виртуализации: построение виртуальных ресурсов, их распределение и использование в настоящее время применяется практически в любой ОС. Этот принцип позволяет представить структуру системы в виде определенного набора планировщиков процессов и распредели-телей ресурсов (мониторов) и использовать единую централизованную схему распреде-ления ресурсов.

Наиболее естественным и законченным проявлением концепции виртуальности является понятие виртуальной машины . Виртуальная машина, предоставляемая пользователю, воспроизводит архитектуру реальной машины, но архитектурные элементы в таком представлении выступают с новыми или улучшенными характе-ристиками, как правило, упрощающими работу с системой. Характеристики могут быть произвольными, но чаще всего пользователи желают иметь собственную «идеальную» по архитектурным характерис-тикам машину в следующем составе:

— единообразная по логике работы виртуаль-ная память практически неограниченного объема.

— произвольное количество виртуальных процессоров, способных работать парал-лельно и взаимодействовать во время рабо-ты.

— произвольное количество внешних вирту-альных устройств, способных работать с памятью виртуальной машины параллельно или последовательно, асинхронно или синхронно по отношению к работе того или иного виртуального процессора, иници-ирующего работу этих устройств.

Одним из аспектов виртуализации является организация возможности выполнения в данной ОС приложений, которые разра-батывались для других ОС. Другими сло-вами, речь идет об организации нескольких операционных сред.

6.) Принцип независимости программ от внешних устройств: этот принцип реализу-ется сейчас в подавляющем большинстве ОС общего применения. Впервые наиболее последовательно данный принцип был реализован в ОС UNIX. Реализован он и в большинстве современных ОС для ПК. Этот принцип заключается в том, что связь программ с конкретными устройствами производится не на уровне трансляции программы, а в период планирования ее исполнения. В результате перекомпиляция при работе программы с новым устройством, на котором располагаются данные, не требуется.

7.) Принцип совместимости: одним из аспектов совместимости является способ-ность ОС выполнять программы, написан-ные для других ОС или для более ранних версий данной ОС, а также для другой аппаратной платформы. Необходимо разделять вопросы двоичной совмести-мости и совместимости на уровне исходных текстов приложений.

Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы совместимость на уровне команд процессора, и совместимость на уровне системных вызовов, и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего трансля-тора в составе системного программного обеспечения, а также совместимости на уровне библиотек и системных вызовов. При этом необходима перекомпиляция имею- щихся исходных текстов в новый выполня-емый модуль.

Гораздо сложнее достичь двоичной совместимости между процессорами, основанными на разных архитектурах. Для того чтобы один компьютер выполнял программы другого (например, программу для ПК типа IBM PC желательно выполнить на ПК типа Macintosh фирмы Apple), этот компьютер должен работать с машинными командами, которые ему изначально непо-нятны. В таком случае процессор типа 680×0 (или PowerPC) должен исполнять двоичный код, предназначенный для процессора i80x86. Процессор 80×86 имеет свои собственные дешифратор команд, регистры и внутреннюю архитектуру. Процессор 680×0 не понимает двоичный код 80×86, поэтому он должен выбрать каждую коман-ду, декодировать ее, чтобы определить, для

чего она предназначена, а затем выполнить эквивалентную подпрограмму, написанную для 680×0.

Одним из средств обеспечения совмести-мости программных и пользовательских интерфейсов является соответствие стан-дартам POSIX, использование которого позволяет создавать программы в стиле UNIX, легко переносимых впоследствии из одной системы в другую.

8.) Принцип открытости и наращиваемости: Открытая операционная система доступна для анализа как пользователям, так и системным специалистам, обслуживающим вычислительную систему. Наращиваемая (модифицируемая, развиваемая) ОС позволяяет не только использовать возможности генерации, но и вводить в ее состав новые модули, совершенствовать существующие и т.д. Другими словами, следует обеспечить возможность легкого внесения дополнений и изменений в необходимых случаях без нарушения целостности системы. Прекрасные возмож-ности для расширения предоставляет подход к структурированию ОС по типу клиент-сервер с использованием микро-ядерной технологии. В соответствии с этим подходом ОС строится как совокупность привилегированной управляющей программ-мы и набора непривилегированных услуг (серверов). Основная часть ОС остается неизменной, и в то же время могут быть добавлены новые серверы или улучшены старые. Этот принцип иногда трактуют как расширяемость системы .

9.) Принцип мобильности: операционная система относительно легко должна перено-

ситься с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа, которая включает наряду с типом процессора и способ организации всей аппаратуры компьютера (архитектуру вычислительной системы), на аппаратную платформу другого типа. Заметим, что принцип переносимости очень близок принципу совместимости, хотя это и не одно и то же. Создание переносимой ОС аналогично написанию любого перено-симого кода, при этом нужно следовать некоторым правилам:

— большая часть ОС должна быть выпол-нена на языке, имеющемся на всех системах, на которые планируется в даль-нейшем ее переносить. Это, прежде всего, означает, что ОС должна быть написана на языке высокого уровня, предпочтительно стандартизованном, например на языке С. Программа, написанная на ассемблере, не является в общем случае переносимой.

— важно минимизировать или, если возмож-но, исключить те части кода, которые непосредственно взаимодействуют с аппаратными средствами. Зависимость от аппаратуры может иметь много форм. Некоторые очевидные формы зависимости включают прямое манипулирование регистрами и другими аппаратными средст-вами. Наконец, если аппаратно-зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программ-мно задаваемые данные абстрактного типа.

Введение стандартов POSIX преследовало цель обеспечить переносимость создава-емого программного обеспечения.

10.) Принцип обеспечения безопасности вычислений: обеспечение безопасности при выполнении вычислений является жела-тельным свойством для любой много-пользовательской системы. Правила безопасности определяют такие свойства, как защиту ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользова-телем всех системных ресурсов, таких, например, как память.

Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операци-онных систем.

—————————————————————

Что такое POSIX : платформенно-незави-симый системный интерфейс для компьюте-рного окружения POSIX (Portable Operating System Interface for Computer Environments) – это стандарт IEEE(Institute of Electrical and Electronics Engineers − институт инженеров по электротехнике и радиоэлектронике.), описывающий системные интерфейсы для открытых ОС, в том числе оболочки, утилиты и инструментарии. Помимо этого, согласно POSIX, стандартизированными являются задачи обеспечения безопасно-сти, задачи реального времени, процессы администрирования, сетевые функции и обработка транзакций. Стандарт базируется на UNIX-системах, но допускает реализацию и в других ОС. POSIX возник как попытка всемирно известной организации IEEE пропагандировать переносимость прило-жений в UNIX-средах путем разработки абстрактного, платформенно-независимого стандарта. Например, известная ОС реального времени QNX соответствует спецификациям этого стандарта.

Этот стандарт подробно описывает систему виртуальной памяти VMS (Virtual Memory System,), многозадачность МРЕ (Multi-Process Executing) и технологию переноса операционных систем CTOS (An Operating System produced Convergent Technology …). Таким образом, на самом деле POSIX представляет собой множество стандартов, именуемых POSIX.I –POSIX.12. Следует также особо отметить, что в POSIX.1 предполагается язык С в качестве основного

языка описания системных функций API.

Таким образом, программы, написанные с соблюдением данных стандартов, будут одинаково выполняться на всех POSIX-совместимых системах. Однако стандарт в некоторых случаях носит лишь рекомен-дательный характер. Часть стандартов описана очень строго, тогда как другая часть только поверхностно раскрывает основные требования.

Реализации POSIX API на уровне операционной системы различны. Если UNIX-системы в своем абсолютном большинстве изначально соответствуют спецификациям IEEE Standard 1003.1-1990, то WinAPI не является POSIX-совместимым. Однако для поддержки данного стандарта в операционной системе MS Windows NT введен специальный модуль поддержки POSIX API, работающий на уровне привилегий пользовательских процессов.

Данный модуль обеспечивает конвертацию и передачу вызовов из пользовательской программы к ядру системы и обратно, работая с ядром через Win API. Прочие приложения, созданные с использованием WinAPI, могут передавать информацию POSIX-приложениям через стандартные механизмы потоков ввода/вывода (stdin, stdout).

Нет похожих постов...

1. Частотный принцип.

Этот принцип основан на выделении в алгоритмах программ и в обрабатываемых массивах действий и данных по частоте их использования. Действия и данные, используемые часто, располагаются в оперативной памяти, т.к. к ним необходим быстрый доступ. К тому же стремятся наиболее часто выполняемые операции оптимизировать по времени выполнения и по занимаемой памяти.

Следствия от применения частотного принципа – это применение многоуровневого планирования при организации работы ОС. На уровень долгосрочного планирования выносятся редкие и длинные операции управления деятельностью системы. Краткосрочному планированию подвергаются часто используемые и короткие операции.

2. Принцип модульности.

Это принцип в равной степени отражает технологические и эксплуатационные свойства. Наибольший эффект от его использования достигается в том случае, когда принцип одновременно распространен на ОС, аппаратуру и прикладные программы.

Под модулем в общем случае понимают функциональный элемент рассматриваемой системы, имеющей законченное оформление и выполненный в пределах требования ОС, а также средства сопряжения с подобными элементами или элементами более высокого уровня данной или другой системы.

Модуль предполагает лёгкий способ его замены на другой модуль, при наличии заданных интерфейсов. Чаще всего разделение на модули происходит по функциональному признаку.

Модули могут быть восстанавливаемыми и невосстанавливаемыми. Если модуль после окончания работы не восстанавливается в исходное состояние, то он называется однократным. Если модуль в процессе работы искажает своё состояние, но перед окончанием работы восстанавливается в исходное состояние, то его называют многократным. Особое значение при построении ОС имеют модули, называемые параллельно используемыми или реентерабельными. Каждый такой модуль может использоваться одновременно несколькими программами. Это позволяет хранить в памяти только одну копию такого модуля.

3. Принцип функциональной избирательности.

В ОС выделяется некоторая часть особо важных модулей, которые должны быть в оперативной памяти постоянно для эффективной организации вычислительного процесса. Эту часть обычно называют ядром ОС.

При формировании ядра необходимо удовлетворить двум противоречивым требованиям:

– в состав ядра должны войти наиболее часто используемые модули;

– количество модулей должно быть таким, чтобы не занимать много оперативной памяти;

В состав ядра входят модули по управлению системой прерываний, средства перевода процессов с одного состояния в другое, средства распределения оперативной памяти. Программы, входящие в состав ядра, обычно загружаются в оперативную память и называются резидентными.


Помимо резидентных программ существуют транзитные модули или программы, которые загружаются только при необходимости и могут перекрывать в оперативной памяти друг друга.

4. Принцип генерируемости.

Определяет такой способ исходного представления ОС, который позволял бы настраивать эту системную программу, исходя из конкретной конфигурации используемой машины и круга решаемых задач.

Процедура генерации проводится достаточно редко, а процесс генерации осуществляется с помощью специальной программы-генератора и входного языка для неё, позволяющего описывать программные возможности системы и конфигурацию машины. В результате генерации получается полная версия ОС. Исходный набор программ ОС, из которого производится генерация называется дистрибутивом.

5. Принцип функциональной избыточности.

Предполагает возможность проведения одной и той же работы различными средствами, т.е. ОС допускает альтернативное выполнение одних и тех же заданий в различных режимах своего функционирования.

6. Принцип по умолчанию.

Принцип основан на хранении в системе некоторых базовых описании, структур процесса, модулей, конфигурации оборудования и данных, определяющих прогнозируемые объемы требуемой памяти, времени счета программы, потребности во внешних устройствах, которые характеризуют пользовательские программы и условия их выполнения.

Эту информацию пользовательская система использует в качестве заданной, если она не будет определена или сознательно конкретизирована. В целом применение этого принципа позволяет сократить число параметров, устанавливаемых пользователем, когда он работает с системой.

7. Принцип перемещаемости.

Предусматривает построение модулей таким образом, что их исполнение не зависит от места расположения в оперативной памяти. Настройка текста модуля в соответствии с его расположением в памяти осуществляется специальными механизмами либо непосредственно пред выполнением программы, либо по мере по мере ее выполнения.

Настройка заключается в определении фактических адресов, используемых в адресных частях команды, и определяется применяемым в конкретной машине способом адресации и алгоритмом распределения оперативной памяти, принятым для данной ОС.

Этот принцип целесообразно распространять и на пользовательские программы.

8. Принцип защиты.

Определяет необходимость разработки мер, ограждающих программы и данные пользователя от искажения и нежелательного влияния друг на друга, а также пользователя на ОС и наоборот. Особенно трудно обеспечить защиту, когда используется разделение ресурсов.

Программы должны быть гарантированно защищены как при выполнении, так и при хранении, хотя попыток испортить и нанести нежелательный эффект пользовательским программам совершается множество.

Реализуется несколько подходов для обеспечения защиты.

Одним из направлений является реализация двухконтекстности работы процессора: в каждый момент времени процессор может выполнять программу из состава ОС либо прикладную или служебную программу, не входящую в состав ОС.

Второе направление состоит в том, чтобы гарантировать невозможность непосредственного доступа к любому разделяемому ресурсу со стороны пользовательских и служебных программ, для чего в состав машинных команд вводятся специальные привилегированные команды, управляющие распределением и использованием ресурсов. Такие команды разрешается выполнять только ОС. Контроль за выполнением привилегированных команд производится аппаратно.

Для реализации принципов защиты может использовать контекстный механизм защиты данных и текста программ, находящийся в операционной памяти. Для программ пользователей выделяются определенные участки памяти и выход за пределы этих участков приводит к возникновению прерываний по защите. Механизм контроля реализуется аппаратным способом, путем применения ограничительных регистров или ключей памяти.

Третье направление реализует механизм защиты данных, хранящихся в памяти, используются подходы, основанные на разграничении прав доступа, введении паролей, контроле за правильной интерпретацией данных, записанных в файле.

9. Принцип независимости программ от внешних устройств.

Позволяет выполнять операции управления внешними устройствами независимо от их конкретных физических характеристик. Связь программ с конкретными устройствами производится не на уровне трансляции программ, а в период планирования ее выполнения. При подключении новых устройств или замене существующих, текст программ не изменяется, а осуществляется подключение нового устройства к ОС путём подключения специальной программы, обеспечивающей взаимодействие ОС с внешним устройством. Такие программы называются драйверами.

10. Принцип открытой и наращиваемой операционной системы.

Открытая ОС доступна пользователю и специалисту, обслуживающему машину, а возможность наращивания или модификации операционной системы позволяет использовать не только возможности генерации, но вводить в операционную систему новые модули или модифицировать существующие.

Лучшие статьи по теме