Компьютерные уроки для начинающих
  • Главная
  • Жесткий диск
  • Модель сетевой архитектуры tcp ip. Архитектура протоколов в компьютерных сетях. архитектура эмвос (open system interconnection, osi). Способы передачи данных

Модель сетевой архитектуры tcp ip. Архитектура протоколов в компьютерных сетях. архитектура эмвос (open system interconnection, osi). Способы передачи данных

Таблица."Стек основных протоколов сетевых архитектур ISO и TCP/IP"

Уровни стандарта ISO

Стек протоколов стандарта ISO

Стек протоколов TCP/IP

7. Прикладной

Набор протоколов

Набор протоколов

6. Представления данных

5. Сеансовый

4. Транспортный

3. Сетевой

2. Канальный

Произвольный

1. Физический

Произвольный

Различия в идеологии построения сетевых архитектур порождают существенные различия механизма передачи данных на всех уровнях стандарта ISO за исключением физического и канального, где могут применяться протоколы LAP-B и Х.21, но могут и другие. Основные отличия в алгоритме передачи данных состоят, во-первых, в идеологии защиты от ошибок, и, во-вторых, в реализации режима коммутации пакетов (КП).
Рассмотрим сначала методы борьбы с ошибками.

Вопросам защиты данных от ошибок и сбоев уделено много внимания. Для этого выделяется второй (канальный) уровень. Обнаружение ошибок выполняется с помощью мощного помехоустойчивого кода типа БЧХ (Рек. V.42) с минимальным кодовым расстоянием d=5, что позволяет обнаруживать любую 4-х кратную ошибку. Исправление ошибок выполняется с помощью алгоритмов с обратной связью – РОС-ОЖ или (чаще) РОС-НП. Для борьбы со вставками и выпадениями кадров используются тайм-аут и циклическая нумерация кадров. На сетевом уровне обеспечиваются нумерация пакетов и их перезапрос. Всё это позволяет использовать передающую среду практически любого качества, однако платой за это является высокая степень вносимой избыточности, т.е. падение реальной скорости передачи информации.

В архитектуре TCP/IP первый и второй уровни вообще не оговорены, т.е. передача может вестись даже без защиты от ошибок. Повышение верности возложено на транспортный протокол ТСР. Если используются хорошие каналы, например, волоконно-оптические линии связи (ВОЛС), то на транспортном уровне используется протокол UDP, где не предусмотрена защита от ошибок. В этом случае обнаружение и исправление ошибок осуществляются на прикладном уровне специальными программами пользователя. Такой подход становится понятным, т.к. архитектура TCP/IP первоначально была реализована в сети ARPANET, где использовались выделенные высокоскоростные каналы.

Рассмотрим различия в способах коммутации пакетов, т.е. в реализации 3-го уровня ISO.

В архитектуре ISO за маршрутизацию (доставку пакетов по адресу) отвечает третий (сетевой) уровень (Рек. Х.25). Предусматривается создание виртуальных соединений или каналов от источника до получателя, а затем по этому соединению передаются пакеты. Такой режим называется виртуальным режимом КП и по принципам напоминает традиционную коммутацию каналов (КК). В архитектуре TCP/IP реализуется другой подход, называемый дейтаграммным режимом КП. Этот режим резко упрощает задачу маршрутизации, но порождает проблему сборки сообщений из пакетов, т.к. пакеты одного сообщения могут доставляться по разным маршрутам и поступать к получателю в разное время. Дейтаграммный режим КП по принципам напоминает коммутацию сообщений (КС).

Cравнения виртуального и дейтаграммного методов КП по следующим характеристикам:

    установление соединения;

    адресация;

    процедура передачи пакета по сети;

    управление входным потоком сообщений;

    эффективность использования сетевых ресурсов.

Установление соединения. При виртуальной КП до передачи сообщения устанавливается логическое соединение между взаимодействующими объектами транспортного уровня (а возможно и более высоких уровней ISO). Этот логический канал запоминается в маршрутных таблицах всех центров коммутации пакетов (ЦКП), которые участвуют в соединении. Пакеты передаются только по установленному логическому каналу, поэтому порядок их следования при этом не нарушается.

При дейтаграммой КП логического соединения не устанавливается, поэтому пакеты одного сообщения передаются по тем маршрутам, которые оптимальны в данный момент, т.е. возможно разными маршрутами. Проблема сборки сообщения из пакетов решается на транспортном уровне.

Адресация. При виртуальном режиме КП полный адрес объекта-получателя передаётся только при установлении логического соединения, т.е. с первым пакетом. Получив этот пакет, объект-получатель извещает отправителя о согласии на проведение сеанса связи (или несогласии). Создаётся логическое соединение, и передаются остальные пакеты, содержащие только номер логического канала.

При дейтаграммном режиме КП каждый передаваемый пакет обязательно должен содержать полный адрес получателя (и отправителя) и номер пакета в сообщении.

Процедура передачи пакета по сети. Виртуальный режим КП предусматривает выделение специальной базовой сети передачи данных (ПД) и передачу пакетов в этой сети ПД по готовому логическому каналу, создаваемому по инициативе транспортного уровня.

При дейтаграммном режиме каждый пакет передаётся по разным маршрутам, что позволяет эффективнее использовать сетевые ресурсы, т.к. в больших сетях загрузка каналов меняется очень быстро, поэтому маршрут доставки желательно корректировать чаще. В данном случае можно построить глобальную сеть без выделения отдельной базовой сети ПД.

Управление входящим потоком сообщений. При виртуальном режиме КП управление потоком входящих сообщений (но не пакетов) возможно лишь на входе виртуального канала, т.е. на конкретном центре коммутации пакетов для данного сообщения.

Дейтаграммный режим КП является более гибким и позволяет управлять входящим потоком сообщений практически с любого ЦКП, что улучшает гибкость управления.

Эффективность использования сетевых ресурсов. В виртуальном режиме КП оптимальный маршрут выбирается только в момент установления логического соединения, поэтому при быстром изменении ситуации на сети путь, оптимальный для первого пакета сообщения, может быть не оптимальным для последующих пакетов одного и того же сообщения.

При дейтаграммном режиме коррекция маршрута производится чаще, что позволяет более равномерно загрузить каналы всей сети и, в конечном счёте, уменьшить время доставки сообщения.

5.2.1.3Сфера применения архитектуры TCP/IP

Сфера применения архитектуры TCP/IP определяется их свойствами, которые порождают основные достоинства и недостатки используемых сетевых архитектур.

Достоинства архитектуры TCP/IP:

    небольшие затраты на реализацию протоколов взаимодействия за счёт меньшего набора требуемых протоколов;

    существенное упрощение процедуры маршрутизации, что снижает стоимость базовой сети передачи данных за счёт использования более простых ЦКП;

    возможность построения крупномасштабной ИВС с использованием разнотипного оборудования;

    возможность реализации взаимодействия различных сетей с применением простых алгоритмов согласования.

К недостаткам архитектуры TCP/IP можно отнести:

    возможность реализации только при использовании «хороших» каналов связи (желательно выделенных);

    необходимость решения проблемы сборки пакетов, которые могут поступать на транспортный уровень в произвольном порядке;

    возможность потери сообщения из-за несвоевременной доставки одного из пакетов этого сообщения;

    усложнение прикладных программ пользователя за счёт введения процедур контроля и исправления ошибок в получаемых сообщениях.

При построении глобальных сетей, когда решающим фактором выступает простота согласования работы различных национальных сетей, реализуемых, как правило, на разнотипном оборудовании, наиболее эффективно применение архитектуры TCP/IP, данный вывод подтверждается практикой, т.к. в Internet используют именно архитектуру TCP/IP.А Сетевая архитектура ISO эффективна при применении «плохих» каналов связи, необходимости работы в реальном масштабе времени и однородной структуре оборудования, причём основным выступает качество каналов связи.

В архитектуре Internet отдельные сети (ЛВС, региональные и глобальные) соединяются друг с другом специальными устройствами - маршрутизаторами IP-пакетов.

Определение. Устройства объединения сетей в рамках Internet называются IP-шлюзами, или IP-маршрутизаторами, или Router.

5.2.1.3.1
5.2.1.3.2Фрагмент сети Интернет

LAN - локальная вычислительная сеть;
MAN - региональная ИВС;
WAN - глобальная ИВС;
WS (Work Station) - рабочая станция ЛВС;
FS (File Server) - файл-сервер;
Host - узловая машина (компьютер, который подключен к сети в качестве узла);
Router - IP-маршрутизатор.

5.2.1.3.3

Шлюз подключается к двум или более сетям, каждая из которых воспринимает этот шлюз как хост-ЭВМ. Поэтому шлюз имеет физический интерфейс и специальный IP-адрес в каждой из подключаемых сетей. Передача пакетов требует от шлюза определение IP-адреса следующего шлюза или, на последнем участке, IP-адреса хост-машины, которой направляется IP-пакет. Функция шлюза, которая обычно называется маршрутизацией, основана на анализе специальных маршрутных таблиц (матриц маршрутов), которые находятся в специальной базе данных. База данных в каждом из шлюзов должна постоянно обновляться, чтобы отражать текущую топологию сети Internet.

Маршрут - это последовательность маршрутизаторов, которые проходит пакет от отправителя до пункта назначения.

В основе функционирования сети Интернет заложены протоколы TCP/IP.

5.2.1.3.4
5.2.1.3.5Пример цепочки протоколов TCP/IP

Данные передаются в пакетах. Пакеты имеют заголовок, который содержит служебную информацию. Данные более верхних уровней вставляются в пакеты нижних уровней.

5.2.1.3.6
5.2.1.3.7Передача сообщений в сети Internet на основе механизма инкапсуляции (encapsulation)
5.2.1.4Физический и канальный уровень

Стек TCP/IP не подразумевает использования каких-либо определенных протоколов уровня доступа к среде передачи и физических сред передачи данных. От уровня доступа к среде передачи требуется наличие интерфейса с модулем IP, обеспечивающего передачу IP-пакетов. Также требуется обеспечить преобразование IP-адреса узла сети, на который передается IP-пакет, в MAC-адрес. Часто в качестве уровня доступа к среде передачи могут выступать целые протокольные стеки, тогда говорят об IP поверх ATM, IP поверх IPX, IP поверх X.25 и т.п.

5.2.1.5Межсетевой уровень и протокол IP (Internet Protocol)

Основу этого уровня составляет IP-протокол:

    Первый стандарт IPv4 определен в RFC-760 (1980 г.).

    Последняя версия IPv4 - RFC-791 (1981 г.).

Назначение протокола IP

Протокол межсетевого взаимодействия - IP - это ненадежный, не требующий установки соединения с получателем, механизм доставки сообщений в виде отдельных пакетов.
"Ненадежность доставки":

    Не гарантируется доставка пакетов получателю;

    По пути следования пакет может быть утерян, продублирован, задержан;

    Пакеты могут быть доставлены с нарушением порядка следования.

Для доставки пакетов не требуется предварительного установления соединения (т.е. пути следования пакетов), так как каждый пакет считается независимым от остальных. Поэтому пакеты от отправителя до получателя могут проходить по разным маршрутам.

Межсетевая дейтаграмма

Пакет, передаваемый по сети Internet, называют IP-дейтаграммой или IP-пакетом.

Структура пакета: заголовок и блок данных.

В заголовок IP-пакета включен набор правил , обеспечивающих доставку пакета данных получателю. В этих правилах оговариваются способы обработки пакетов узлами сети и маршрутизаторами, а также условия, при возникновении которых должны генерироваться сообщения об ошибке, а пакеты удаляться из сети.

5.2.1.5.1
5.2.1.6Типы адресов стека TCP/IP

В стеке TCP/IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена.

В терминологии TCP/IP под локальным адресом понимается такой тип адреса, который используется средствами базовой технологии для доставки данных в пределах подсети, являющейся элементом составной сети. Если подсетью составной сети является локальная сеть, то локальный адрес – это MAC-адрес. MAC-адрес назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. MAC-адреса назначаются производителями оборудования и являются уникальными. Для всех существующих технологий локальных сетей MAC-адрес состоит из 6 байт, например 11-A0-17-3D-BC-01. MAC-адрес – это адрес, используемый на канальном уровне.

IP-адрес – это адрес сетевого уровня. IP-адреса представляют собой основной тип адресов, на основании которых сетевой уровень передает пакеты между сетями. Эти адреса состоят из 4 байт, например, 109.26.17.100. IP-адрес назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер узла назначается независимо от локального адреса узла.

Символьные доменные имена - специальные имена компьютеров в сети Internet.

5.2.1.7Протокол межсетевых взаимодействий (IPv4)
5.2.1.7.1Представление и структура IP-адреса

Двоичный формат

Десятичный формат

5.2.1.7.2Классовая система адресации
5.2.1.7.3
5.2.1.7.4Специальные адреса

00000000

00000000

00000000

00000000

Разрешено использовать только в процессе инициализации сетевого программного обеспечения

11111111

11111111

11111111

11111111

Ограниченный широковещательный адрес в своей локальной сети

00000000

Идентификатор узла

00000000

00000000

Идентификатор узла

00000000

00000000

00000000

Идентификатор узла

Компьютер в своей сети

Идентификатор сети

11111111

11111111

11111111

Идентификатор сети

11111111

11111111

Идентификатор сети

11111111

Направленный широковещательный адрес в указанной сети

01111111

Специальные комбинации

Петля обратной связи

Класс сети

Количество сетей

Количество узлов в сети

Диапазон значений первого байта идентификаторов сети

Класс D имеет следующую сетку групповых IP-адресов:
от 224.0.0.0 до 239.255.255.255.

5.2.1.7.5Назначение идентификаторов сетей

Для подключения сети к Интернет необходимо получить идентификатор сети от Информационного Центра Интернет (InterNIC- Internet NetworkInformation Center). Идентификатор сети должен охватывать все узлы, подключенные к одной физической сети.

5.2.1.7.6
5.2.1.7.7Пример распределения IP-адресов
5.2.1.7.8
5.2.1.7.9Адреса интерфейсов
5.2.1.7.10
5.2.1.7.11Сетевые адреса
5.2.1.7.12
5.2.1.7.13Три маршрутизатора, соединяющие шесть хостов

Адресное пространство, выделенное для Intranet (автономные IP-сети):
в классе А - одна сеть с адресом 10.x.y.z.
в классе B - 16 сетей с адресами 172.16.y.z. - 172.31.y.z.
в классе C - 256 сетей с адресами 192.168.y.z. - 192.168.255.z

5.2.1.7.14Подсети

Традиционная схема деления IP-адреса на номер сети и номер узла основана на понятии класса, который определяется значениями нескольких первых бит адреса. Именно потому, что первый байт адреса 185.23.44.206 попадает в диапазон 128-191, можно сказать, что этот адрес относится к классу B, а значит, номером сети являются первые два байта, дополненные двумя нулевыми байтами – 185.23.0.0, а номером узла – 0.0.44.206. В таком представлении IP-адрес состоит из двух иерархических уровней. Необходимость во введении третьего уровня иерархии – уровня подсетей – была продиктована возникновением дефицита номеров сетей и резким ростом таблиц маршрутизации маршрутизаторов в сети Интернет. После введения уровня подсети номер узла разделяется на две части – номер подсети и номер узла в этой подсети.

5.2.1.7.15
5.2.1.7.16Формирование трехуровневой иерархии

Увеличение количества уровней снимает проблему роста таблиц маршрутизации благодаря тому, что информация о топологии частных сетей становится ненужной магистральным маршрутизаторам Интернета. Маршруты из сети Интернет до любой конкретной подсети, расположенной в сети с данным IP-адресом, одинаковы и не зависят от того, в какой подсети расположен получатель. Это стало возможным благодаря тому, что все подсети сети с данным номером используют один и тот же номер сети, хотя их номера (номера подсетей) разные. Маршрутизаторам в частной сети требуется различать отдельные подсети, но для маршрутизаторов Интернета все подсети относятся к единственной записи в таблице маршрутизации. Это позволяет администратору частной сети вносить любые изменения в логическую структуру своей сети, не влияя на размер таблиц маршрутизации маршрутизаторов Интернета.

Хрестоматия по дисциплине Информатика Составил : ст . преподаватель Столяров А.С. весенний семестр 2009 Содержание 1 Понятие информации 3 ... Как сдать экзамен и централизованное тестирование по информатике на 100 баллов. - Ростов...

  • Основная образовательная программа

    ... по семестрам ... по дисциплинам профессионального цикла привлечено 17 % преподавателей ... а также хрестоматии и методические... в области информатики ; методы и... субъектного состава , содержания и... весеннем ... на основании ст . 11 ... Независимых Государств. – 2009 . – № ...

  • Документ

    Ведущих преподавателей факультета по курсам математических дисциплин Информатика» ), а также дисциплин , наиболее... МЭИ велось по 15 дисциплинам , обучалось 304 студента. В весеннем семестре 2009 /2010 учебного...

  • Межвузовский центр по историческому образованию в технических вузах российской федерации межвузовский центр по политологическому образованию

    Документ

    Ведущих преподавателей факультета по курсам математических дисциплин («Математика», «Математическая психология», «Информатика» ), а также дисциплин , наиболее... МЭИ велось по 15 дисциплинам , обучалось 304 студента. В весеннем семестре 2009 /2010 учебного...

  • Компетентностный подход как концептуальная основа современного образования сборник научных статей по материалам международной научно-практической конференции (февраль 2010 г)

    Документ

    ... по дисциплине «История России». Преподаватель ... мае 2009 года... составить ... течение всего семестра , а... ст .9) ... Современная военная психология: Хрестоматия / сост. ... веселый весенний ... содержании образования должна занять важное место коммуникативность: информатика ...

  • Когда необходимо обеспечить обмен данными между прикладными процессами, которые выполняются на удаленных компьютерах, требуется поддерживать довольно сложные процедуры.

    Поэтому логика взаимодействия процессов в сети не реализуется в виде единого модуля, а разбивается на множество подзадач. Каждая подзадача реализуется отдельным программным или аппаратным модулем.

    Модули распределяются по функциональным уровням, которые организуются в виде ВЕРТИКАЛЬНОГО СТЕКА:

    Каждый уровень стека выполняет свое подмножество функций, необходимое для общения с другой системой, при этом каждый уровень предоставляет услуги смежному вышестоящему уровню и в свою очередь пользуется услугами смежного нижнего уровня.

    Таким образом, функциональные уровни внутри одной системы взаимодействуют на строго иерархической основе.

    Архитектура процессов в компьютерной сети

    При идеальной реализации такой архитектуры удаленные системы общаются при помощи обмена блоками данных строго определенного формата. И модули каждого функционального уровня на передающей стороне генерируют управляющую информацию, которая анализируется и обрабатывается на приемной стороне модулями того же ранга. Этот обмен подчиняется набору правил, который называется протоколом уровня.

    В 1983 году в целях упорядочения принципов взаимодействия устройств в сетях передачи данных Международная организация по стандартизации (МОС, ISO) утвердила в качестве международного стандарта 7-ми уровневую модель для архитектуры коммуникационных протоколов. Предполагалось , что эта модель должна послужить основой для разработки международных стандартов протоколов. Модель получила название - Эталонная модель Взаимодействия Открытых Систем ВОС (стандарт ISO #7498, рекомендация Международного Союза электросвязи МСЭ-Т Х.200). Разработчики модели полагали, что эта модель и протоколы, разрабатываемые в ее рамках, будут преобладать в средствах компьютерной связи, и, в конце концов, вытеснят фирменные протоколы и конкурирующие модели, такие как TCP/IP. Хотя этого не произошло, в рамках модели было создано много полезных протоколов. И в настоящее время, большинство разработчиков и поставщиков сетевого оборудования определяют свои продукты в терминах эталонной модели ВОС или OSI (Open System Interconnection).

    Термин "открытая система " означает возможность использования в сети компьютеров разных типов и классов, с различным программным и аппаратным обеспечением. Главное, чтобы сетевые устройства использовали открытые (то есть, известные, стандартизованные) форматы данных, протоколы взаимодействия и интерфейсы. Это гарантирует возможность обмена информацией между пользователями сети, независимо от способов программной и аппаратной реализации используемых сетевых устройств. Такая сеть является открытой.

    В соответствии с моделью OSI взаимодействие прикладных процессов пользователей в сети разбивается на 7 функциональных уровней.

    Нумерация функциональных уровней идет снизу вверх. На рисунке показаны названия уровней ВОС и соответствующих уровневых протоколов.

    На стороне передаче пересылаемый блок данных проходит вниз через все функциональные уровни компьютера-отправителя, а на приеме - проходит снизу вверх через все функциональные уровни получателя.

    Как правило, каждый уровень на передаче добавляет к блоку данных свой заголовок , который содержит служебную информацию (адресация сообщений и управляющие функции) для модулей, работающих на том же функциональном уровне на приемной стороне.

    Функциональные уровни 1-4 (физический – транспортный) предоставляют транспортные услуги по доставке блока данных от прикладного процесса компьютера – источника до прикладного процесса компьютера – получателя информации.

    Пакет, поступающий от смежного вышестоящего уровня, называется блоком данных протокола этого уровня PDU (Protocol Data Unit). Например, блок данных сетевого уровня может включать в себя собственно данные прикладного процесса пользователя (Данные ППП) и заголовки "Сет -….- Прик".

    Когда поток бит по сети поступает на вход сетевого разъема компьютера-получателя, он принимается его физическим уровнем, затем канальный уровень выделяет в этом потоке кадры, и далее, блок данных последовательно перемещается по функциональным уровням вверх. Каждый уровень анализирует и обрабатывает свой заголовок, выполняет необходимые функции, удаляет свой заголовок и передает оставшийся блок данных протоколу верхнего смежного уровня.

    Правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты (модули, сущности) одного функционального уровня, но работающие в разных узлах, называются протоколом уровня.

    Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

    Совокупность правил взаимодействия сетевых компонентов смежных уровней внутри одной системы и аппаратно-программных средств на границе уровней называется интерфейсом. Интерфейсы бывают аппаратные (физический уровень) и программные (например, транспортный уровень).

    Набор уровней и протоколов называется архитектурой сети.

    Физический уровень обеспечивает передачу/прием неструктурированного потока бит в физической среде.

    Уровень определяет механические , электрические и функциональные параметры физической связи, то есть описывает процесс прохождения сигналов через среду передачи между сетевыми устройствами. На этом уровне решаются вопросы: какое количество контактов должно быть в сетевом разъеме и для чего используется каждый контакт, какие сигналы используются для передачи битов "1" и "0" в последовательности данных, чему должна быть равна скорость модуляции В (число импульсов в секунду), как устанавливается начальное физическое соединение и как оно разрывается, как обеспечивается синхронизация приемника с поступающими сигналами.

    Сетевое устройство - Повторитель или хаб (hub, repeater) выполняет только функции физического уровня. Функции хаба – усиление и ретрансляция сигналов. Хаб имеет несколько сетевых разъемов (портов) для подключения среды передачи (кабеля). Сигнал, поступивший на вход одного из портов, пересылается параллельно на все выходные порты (за исключением входного).

    Канальный уровень (уровень звена данных). Звено данных – это участок сети, включающий два соседних сетевых устройства и физическую линию связи между ними. Например, компьютер пользователя – линия связи кабель UTP 5e – коммутатор.

    Основными функциями протоколов канального уровня являются управление потоком данных на звене, управление доступом к среде передачи, защита от ошибок .

    Протокол канального уровня в глобальной (региональной) сети Wide Area Network (WAN) обеспечивает доставку кадра между соседними в сети узлами, соединенными индивидуальной линией связи.

    Протокол канального уровня в локальной сети Local Area Network (LAN) может обеспечить доставку кадра между любыми узлами этой сети, но в современных сетях при этом задействуются протоколы вышестоящих уровней – сетевого и транспортного.

    Локальные сети изначально строились с использованием разделяемой (share) среды передачи. В настоящее время методы разделения среды передачи в локальной сети используются на участках беспроводного доступа (например, WI-FI). Поэтому, канальный уровень LAN разделен на два подуровня (стандарты IEEE 802.x):

    · LLC (Logical Link Control) - подуровень управления логическим каналом (взаимодействие с сетевым уровнем, управление потоком кадров, передача кадров между рабочими станциями сети в соответствии с определенной процедурой: 1) без установления логического соединения и без подтверждения правильного приема кадра; 2) с установлением логического соединения, нумерацией передаваемых кадров и повторной передачей искаженных кадров; 3) без установления логического соединения, но с подтверждением.

    · MAC (Media Access Control) - подуровень управления доступом к среде передачи (реализация алгоритма доступа к среде, адресация узлов сети по физическим (аппаратным) адресам сетевых карт, проверка принятого кадра на наличие ошибок).

    Сетевые устройства, выполняющие функции канального уровня –коммутатор (SW-switch), мост (bridge), сетевой адаптер (сетевая карта) узла в локальной сети (NIC – Network Interface Card).

    Сетевой уровень отвечает за организацию маршрута передачи пакетов в сложной сети, состоящей из множества сегментов (подсетей), и позволяет работать в произвольных сетевых топологиях. Внутри сегментов могут использоваться совершенно разные принципы передачи сообщений между конечными узлами – компьютерами. Примером такой сети является сеть Интернет. Основным функциональным устройством сетевого уровня является маршрутизатор (router). Маршрутизатор всегда реализуется программно, протоколы сетевого уровня включаются в состав сетевой операционной системы компьютера.

    На сетевом уровне создаётся логический адрес подсети для идентификации группы компьютеров. Этот адрес присваивается автоматически операционной системой или администратором системы.

    Маршрутизаторы не видят физических адресов, используемых канальным уровнем. Они пересылают информацию по логическим адресам подсетей.

    Маршрутизатор (R, router) принимает решение о том, куда направлять поступающие пакеты данных, исходя из информации в заголовке сетевого уровня. Заголовок содержит сетевой адрес отправителя и адрес получателя, то есть числовые идентификаторы, которые позволяют однозначно определить устройство в сети.

    Работу маршрутизатора поддерживают два процесса. Один процесс обрабатывает приходящие пакеты и выбирает для них по своей таблице маршрутизации исходящую линию (исходящий порт). Второй процесс отвечает за заполнение и обновление таблиц маршрутизации. Второй процесс работает в соответствии с определенным алгоритмом выбора маршрута – алгоритмом маршрутизации .

    Алгоритмы маршрутизации можно разбить на два основных класса: адаптивные и неадаптивные .

    Неадаптивные алгоритмы (статическая маршрутизация ) не учитывают топологию и текущее состояние сети и не измеряют трафик на линиях связи. Список маршрутов загружается в память маршрутизатора заранее и не изменяется при изменении состояния сети.

    Адаптивные алгоритмы (динамическая маршрутизация ) изменяют решение о выборе маршрутов при изменении топологии сети и в зависимости от загруженности линий.

    Маршрутизатор (router) определяет оптимальный (лучший) путь передачи пакета, вычисляя количественные показатели, которые называются метриками . Обычно лучший путь – это путь с наименьшей метрикой.

    Переход пакета через маршрутизатор часто называют скачком (hop) или хопом .

    Простейшие алгоритмы маршрутизации определяют маршрут на основании наименьшего числа транзитных узлов на пути к адресату (дистанционно-векторные алгоритмы DVA или маршрутизация по вектору расстояния, протокол маршрутизации RIP – routinginformationprotocol). Более сложные алгоритмы учитывают несколько показателей, например, общую задержку при передаче пакетов до узла назначения, пропускную способность каналов связи или денежную стоимость связи (протокол OSPF, алгоритмы состояния связей LSA, алгоритм Дейкстры – поиск оптимального маршрута на графе).

    Основным результатом работы алгоритма маршрутизации является создание и поддержка таблицы маршрутизации , в которую записывается вся маршрутная информация.

    Транспортный уровень фактически отделяет приложение пользователя и три верхних уровня, которые отвечают за обработку данных , от физических и функциональных особенностей коммуникационной сети. Главная задача транспортного уровня – обеспечить надежный и прозрачный перенос данных между конечными точками (компьютерами пользователей, компьютером и сервером) через сеть.

    Транспортный уровень должен довести качество сетевого соединения до того класса надежности, который запросило приложение.

    Модель OSI определяет 5 классов сервиса (услуг), предоставляемых транспортным уровнем. Они отличаются срочностью, возможностью восстановления прерванного соединения, а главное – обнаружением и исправлением ошибок в принятых пакетах.

    К средствам обнаружения и устранения ошибок транспортными протоколами относятся: предварительное установление логического соединения, вычисление контрольных сумм, нумерация пакетов (сегментов), установление таймеров доставки, повторная передача пакетов через сеть и т.д.

    Сеансовый уровень управляет сеансами взаимодействия прикладных процессов пользователей. На этом уровне определяется, какая из сторон является активной в данный момент, и обеспечивается синхронизация диалога прикладных процессов. Средства синхронизации позволяют организовывать контрольные точки в длинных передачах, чтобы в случае отказа можно было вернуться к последней контрольной точке, не начиная всю передачу данных сначала.

    Представительный уровень или уровень представления определяет синтаксис передаваемых сообщений, то есть, набор символов алфавита и способы их представления в виде двоичных чисел (первичный код). Уровень обеспечивает процесс согласования различных кодировок, а также может выполнять шифрование, дешифрование и сжатие данных.

    Прикладной уровень обеспечиваетдоступ дляприложений пользователя к сетевым службам , таким как доступ к файлам, пересылка электронной почты, обработчик запросов к базам данных. Уровень отвечает за семантику , то есть смысловое содержание сообщений, которыми обмениваются удаленные приложения.

    Устройство, которое занимается распределение информационных потоков в сети и которое выполняет функции всех уровней до прикладного уровня включительно, называется шлюз (gateway ).


    Похожая информация.


    Набор многоуровневых протоколов, или как называют стек TCP/IP, предназначен для использования в различных вариантах сетевого окружения. Стек TCP/IP с точки зрения системной архитектуры соответствует эталонной модели OSI (Open Systems Interconnection - взаимодействие открытых систем) и позволяет обмениваться данными по сети приложениям и службам, работающим практически на любой платформе, включая Unix, Windows, Macintosh и другие.

    Рис. 3.2

    Реализация TCP/IP фирмы Microsoft соответствует четырехуровневой модели вместо семиуровневой модели, как показано на рис. 3.2. Модель TCP/IP включает большее число функций на один уровень, что приводит к уменьшению числа уровней. В модели используются следующие уровни:

    уровень Приложения модели TCP/IP соответствует уровням Приложения, Представления и Сеанса модели OSI;

    уровень Транспорта модели TCP/IP соответствует аналогичному уровню Транспорта модели OSI;

    межсетевой уровень модели TCP/IP выполняет те же функции, что и уровень Сети модели OSI;

    уровень сетевого интерфейса модели TCP/IP соответствует Канальному и Физическому уровням модели OSI.

    Уровень Приложения

    Через уровень Приложения модели TCP/IP приложения и службы получают доступ к сети. Доступ к протоколам TCP/IP осуществляется посредством двух программных интерфейсов (API - Application Programming Interface):

    Сокеты Windows;

    Интерфейс сокетов Windows, или как его называют WinSock, является сетевым программным интерфейсом, предназначенным для облегчения взаимодействия между различными TCP/IP - приложениями и семействами протоколов.

    Интерфейс NetBIOS используется для связи между процессами (IPC - Interposes Communications) служб и приложений ОС Windows. NetBIOS выполняет три основных функции:

    определение имен NetBIOS;

    служба дейтаграмм NetBIOS;

    служба сеанса NetBIOS.

    В таблице 3.1 приведено семейство протоколов TCP/IP.

    Таблица 3.1

    Название протокола

    Описание протокола

    Сетевой программный интерфейс

    Связь с приложениями ОС Windows

    Интерфейс транспортного драйвера (Transport Driver Interface) позволяет создавать компоненты сеансового уровня.

    Протокол управления передачей (Transmission Control Protocol)

    Протокол пользовательских дейтаграмм (User Datagram Protocol)

    Протокол разрешения адресов (Address Resolution Protocol)

    Протокол обратного разрешения адресов (Reverse Address Resolution Protocol)

    Протокол Internet(Internet Protocol)

    Протокол управляющих сообщений Internet (Internet Control Message Protocol)

    Протокол управления группами Интернета (Internet Group Management Protocol),

    Интерфейс взаимодействия между драйверами транспортных протоколов

    Протокол пересылки файлов (File Transfer Protocol)

    Простой протокол пересылки файлов (Trivial File Transfer Protocol)

    Уровень транспорта

    Уровень транспорта TCP/IP отвечает за установления и поддержания соединения между двумя узлами. Основные функции уровня:

    подтверждение получения информации4

    управление потоком данных;

    упорядочение и ретрансляция пакетов.

    В зависимости от типа службы могут быть использованы два протокола:

    TCP (Transmission Control Protocol - протокол управления передачей);

    UDP (User Datagram Protocol - пользовательский протокол дейтаграмм).

    TCP обычно используют в тех случаях, когда приложению требуется передать большой объем информации и убедиться, что данные своевременно получены адресатом. Приложения и службы, отправляющие небольшие объемы данных и не нуждающиеся в получении подтверждения, используют протокол UDP, который является протоколом без установления соединения.

    Протокол управления передачей (TCP)

    Протокол TCP отвечает за надежную передачу данных от одного узла сети к другому. Он создает сеанс с установлением соединения, иначе говоря виртуальный канал между машинами. Установление соединения происходит в три шага:

    Клиент, запрашивающий соединение, отправляет серверу пакет, указывающий номер порта, который клиент желает использовать, а также код (определенное число) ISN (Initial Sequence number).

    Сервер отвечает пакетом, содержащий ISN сервера, а также ISN клиента, увеличенный на 1.

    Клиент должен подтвердить установление соединения, вернув ISN сервера, увеличенный на 1.

    Трехступенчатое открытие соединения устанавливает номер порта, а также ISN клиента и сервера. Каждый, отправляемый TCP - пакет содержит номера TCP - портов отправителя и получателя, номер фрагмента для сообщений, разбитых на меньшие части, а также контрольную сумму, позволяющую убедиться, что при передачи не произошло ошибок.

    Пользовательский протокол дейтаграмм (UDP)

    В отличие от TCP UDP не устанавливает соединения. Протокол UDP предназначен для отправки небольших объемов данных без установки соединения и используется приложениями, которые не нуждаются в подтверждении адресатом их получения. UDP также использует номера портов для определения конкретного процесса по указанному IP адресу. Однако UDP порты отличаются от TCP портов и, следовательно, могут использовать те же номера портов, что и TCP, без конфликта между службами.

    Межсетевой уровень

    Межсетевой уровень отвечает за маршрутизацию данных внутри сети и между различными сетями. На этом уровне работают маршрутизаторы, которые зависят от используемого протокола и используются для отправки пакетов из одной сети (или ее сегмента) в другую (или другой сегмент сети). В стеке TCP/IP на этом уровне используется протокол IP.

    Протокол Интернета IP

    Протокол IP обеспечивает обмен дейтаграммами между узлами сети и является протоколом, не устанавливающим соединения и использующим дейтаграммы для отправки данных из одной сети в другую. Данный протокол не ожидает получение подтверждения (ASK, Acknowledgment) отправленных пакетов от узла адресата. Подтверждения, а также повторные отправки пакетов осуществляется протоколами и процессами, работающими на верхних уровнях модели.

    К его функциям относится фрагментация дейтаграмм и межсетевая адресация. Протокол IP предоставляет управляющую информацию для сборки фрагментированных дейтаграмм. Главной функцией протокола является межсетевая и глобальная адресация. В зависимости от размера сети, по которой будет маршрутизироваться дейтаграмма или пакет, применяется одна из трех схем адресации.

    Адресация в IP-сетях

    Каждый компьютер в сетях TCP/IP имеет адреса трех уровней: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя).

    Физический, или локальный адрес узла, определяемый технологией, с помощью которой построена сеть, в которую входит узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС - адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем.

    Сетевой, или IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

    Символьный адрес, или DNS-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес используется на прикладном уровне, например, в протоколах FTP или telnet.

    Протоколы сопоставления адреса ARP и RARP

    Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol (ARP). ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило, не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP - RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

    В локальных сетях ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.

    Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP-запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP-запрос и сравнивают указанный там IP-адрес с собственным адресом. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета.

    Протокол ICMP

    Протокол управления сообщениями Интернета (ICMP - Internet Control Message Protocol) используется IP и другими протоколами высокого уровня для отправки и получения отчетов о состоянии переданной информации. Этот протокол используется для контроля скорости передачи информации между двумя системами. Если маршрутизатор, соединяющий две системы, перегружен трафиком, он может отправить специальное сообщение ICMP - ошибку для уменьшения скорости отправления сообщений.

    Протокол IGMP

    Узлы локальной сети используют протокол управления группами Интернета (IGMP - Internet Group Management Protocol), чтобы зарегистрировать себя в группе. Информация о группах содержится на маршрутизаторах локальной сети. Маршрутизаторы используют эту информацию для передачи групповых сообщений.

    Групповое сообщение, как и широковещательное, используется для отправки данных сразу нескольким узлам.

    Network Device Interface Specification - спецификация интерфейса сетевого устройства, программный интерфейс, обеспечивающий взаимодействие между драйверами транспортных протоколов, и соответствующими драйверами сетевых интерфейсов. Позволяет использовать несколько протоколов, даже если установлена только одна сетевая карта.

    Уровень сетевого интерфейса

    Этот уровень модели TCP/IP отвечает за распределение IP-дейтаграмм. Он работает с ARP для определения информации, которая должна быть помещена в заголовок каждого кадра. Затем на этом уровне создается кадр, подходящий для используемого типа сети, такого как Ethernet, Token Ring или ATM, затем IP-дейтаграмма помещается в область данных этого кадра, и он отправляется в сеть.

    Вопросы

    Назначение спецификации стандартов IEEE802.

    Какой стандарт описывает сетевую технологию Ethernet?

    Какой стандарт определяет задачи управления логической связью?

    Какой стандарт задает механизмы управления сетью?

    Какой стандарт описывает сетевую технологию ArcNet?

    Какой стандарт описывает сетевую технологию Token Ring?

    Что такое интерфейс уровня базовой модели OSI?

    Что такое протокол уровня базовой модели OSI?

    Дать определение стека протоколов.

    На какие уровни разбиваются стеки протоколов?

    Назвать наиболее популярные сетевые протоколы.

    Назвать наиболее популярные транспортные протоколы.

    Назвать наиболее популярные прикладные протоколы.

    Перечислить наиболее популярные стеки протоколов.

    Назначение программных интерфейсов сокетов Windows и NetBIOS.

    Чем отличается протокол TCP от UDP?

    Функции протокола IP.

    Какие существуют виды адресации в IP-сетях?

    Какой протокол необходим для определения локального адреса по IP-адресу?

    Какой протокол необходим для определения IP-адреса по локальному адресу?

    Какой протокол используется для управления сообщениями Интернета?

    Назначение уровня сетевого интерфейса стека TCP/IP.

    В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

    TCP/IP

    Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

    Стек протоколов сети TCP/IP имеет 4 уровня:

    1. Канальный (Link).
    2. Сетевой (Internet).
    3. Транспортный (Transport).
    4. Прикладной (Application).

    Прикладной уровень

    Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

    • HTTP;
    • SMTP;

    Каждый протокол определяет собственный порядок и принципы работы с данными.

    HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

    Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

    Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

    1. Определение адреса отправителя. Это необходимо для возвращения писем.
    2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
    3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

    Заголовок (Header)

    В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

    Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

    Транспортный уровень

    На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

    Протоколы передачи данных:

    Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

    UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

    TCP или UDP?

    У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

    Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

    Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

    UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

    Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

    Сетевой уровень

    Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

    IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

    MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

    Сетевой уровень отвечает за:

    • Определение маршрутов доставки.
    • Передачу пакетов между сетями.
    • Присвоение уникальных адресов.

    Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

    Самый популярный протокол этого уровня - IP.

    IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

    Виды IP-адресов

    В сетях используются два вида IP-адресов:

    1. Публичные.
    2. Приватные.

    Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

    Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

    Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

    IPv4

    Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

    Формат записи: .

    IPv6

    Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

    Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

    Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

    Пример записи: .

    Существует три типа IPv6-адресов:

    1. Unicast.
    2. Anycast.
    3. Multicast.

    Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

    Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

    Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

    Маска подсети

    Маска подсети выявляет из IP-адреса подсеть и номер хоста.

    Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

    Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

    Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

    Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

    Подсеть и хост

    Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

    Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

    Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

    Адресация

    Для адресации в стеке протоколов TCP/IP используются три типа адресов:

    1. Локальные.
    2. Сетевые.
    3. Доменные имена.

    Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

    Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

    Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

    Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

    Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

    Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

    Устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

    Канальный уровень

    На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

    Самые распространенные протоколы:

    1. Ethernet.
    2. WLAN.

    Ethernet - наиболее распространенная технология проводных локальных сетей.

    WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

    Настройка TCP/IP для использования статического IPv4-адреса

    Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

    Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

    Настройка TCP/IP для использования динамического IPv4-адреса

    Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

    Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

    Способы передачи данных

    Данные передаются через физическую среду тремя способами:

    • Simplex.
    • Half-duplex.
    • Full Duplex.

    Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

    Примеры симплексной связи:

    • Телевещание.
    • Сигнал от спутников GPS.

    Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

    Пример полудуплексной связи - общение по рации на одной частоте.

    Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

    Пример дуплексной связи - общение по телефону через мобильную сеть.

    TCP/IP vs OSI

    Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

    1. Физический (Physical).
    2. Канальный (Data Link).
    3. Сетевой (Network).
    4. Транспортный (Transport).
    5. Сеансовый (Session).
    6. Представительский (Presentation).
    7. Прикладной (Application).

    В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

    Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

    Транспортный уровень остается без изменений. Выполняет одинаковые функции.

    Сетевой уровень также не изменен. Выполняет ровно те же задачи.

    Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

    Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

    TCP/IP - это аббревиатура термина Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Межсетевой протокол). Фактически TCP/IP не один протокол, а множество, стек протоколов.

    TCP/IP был разработан для того, чтобы вычислительные сети исследовательских центров во всем мире могли быть объединены в форме виртуальной "сети сетей" (internetwork). Первоначальная Internet была создана в результате преобразования существующего конгломерата вычислительных сетей, носивших название ARPAnet, с помощью TCP/IP.

    В сети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). По существу TCP/IP скрывает маршрутизаторы и базовую архитектуру сетей от пользователей, так что всё это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

    Данные передаются в пакетах. Пакеты имеют заголовок и окончание, которые содержат служебную информацию. Данные, более верхних уровней вставляются (инкапсулируются), как письмо в конверт, в пакеты нижних уровней.

    TCP/IP дает решение проблемы обмена данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый уровень семейства протоколов TCP/IP вносит свою лепту в общее дело. IP - самый фундаментальный протокол из комплекта TCP/IP - передает IP-дейтаграммы и обеспечивает выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B и использование маршрутизаторов для "прыжков" между сетями.

    TCP - это протокол более высокого уровня, который позволяет прикладным программам, запущенным на различных компьютерах сети обмениваться потоками данных. TCP делит потоки данных на цепочки, которые называются TCP-сегментами, и передает их с помощью IP. В большинстве случаев каждый TCP-сегмент пересылается в одной IP-дейтаграмме. Однако при необходимости TCP будет расщеплять сегменты на несколько IP-дейтаграмм, вмещающихся в физические кадры данных, которые используют для передачи информации между компьютерами в сети. Поскольку IP не гарантирует, что дейтаграммы будут получены в той же самой последовательности, в которой они были посланы, TCP осуществляет повторную "сборку" TCP-сегментов на другом конце маршрута, чтобы образовать непрерывный поток данных.

    Другой важный протокол стека TCP/IP - User Datagram Protocol (UDP, протокол пользовательских дейтаграмм), который похож на TCP, но более примитивен. TCP - "надежный" протокол, потому что он обеспечивает проверку на наличие ошибок и обмен подтверждающими сообщениями, чтобы данные достигали своего места назначения заведомо без искажений. UDP - "ненадежный" протокол, который не гарантирует, что дейтаграммы будут приходить в том порядке, в котором были посланы, и даже того, что они придут вообще. UDP используется для управления соединениями.

    Другие TCP/IP протоколы играют менее заметные, но в равной степени важные роли в работе сетей TCP/IP. Например, протокол определения адресов (Address Resolution Protocol, ARP) ппреобразует IP-адреса в физические сетевые адреса, такие, как идентификаторы Ethernet. Родственный протокол - протокол обратного преобразования адресов (Reverse Address Resolution Protocol, RARP) - выполняет обратное действие, преобразуя физические сетевые адреса в IP-адреса. Протокол управления сообщениями Internet (Internet Control Message Protocol, ICMP) представляет собой протокол сопровождения, который использует IP для обмена управляющей информацией и контроля над ошибками, относящимися к передаче пакетов IP. Например, если маршрутизатор не может передать IP-дейтаграмму, он использует ICMP, с тем чтобы информировать отправителя, что возникла проблема.

    TCP/IP – собирательное название для набора (стека) сетевых протоколов разных уровней, используемых в Интернет.

    Стек протоколов TCP/IP делится на 4 уровня:

    · Прикладной (приложений);

    · Транспортный;

    · Сетевой (межсетевой);

    · Физический (канальный).

    Основная функциональность сетей TCP/IP реализована протоколами TCP (протокол с контролем передачи) и IP (межсетевой протокол). Протокол IP работает на сетевом уровне, протокол TCP – на транспортном. На прикладном уровне работает большое количество протоколов, как общеупотребимых (http, smtp, dns, smb), так и малораспространённых (binkp), которые используются различными пользовательскими программами для связи между собой и передачи данных, но все они пользуются транспортом, предоставляемым TCP/IP. Эти протоколы называются базовыми, так как все прочие базируются на них, и вся технология называется TCP/IP.

    Наряду с TCP, на транспортном уровне используется протокол UDP. В отличие от TCP он не создаёт соединение, а просто отправляет датаграммы. Такой способ передачи без установления соединения, удобен для некоторых применений, в основном служебных. В частности, через UDP работает протокол определения сетевого имени DNS.

    Уровни стека TCP/IP не вполне совпадают с теоретическими уровнями модели OSI

    TCP/IP не регламентирует использование протоколов и технологий физического и канального уровней. Необходимо и достаточно наличие интерфейса модулей канального уровня с модулем IP, обеспечивающего передачу IP-пакетов. Средства и методы обеспечения этой передачи – вне зоны действия TCP/IP. При практической реализации уровней модели OSI оказалось удобнее совместить некоторые уровни в одном модуле. Соответствие уровней стека TCP/IP и OSI выглядит приблизительно так:

    На рисунке показано, как TCP/IP согласуется с моделью ISO/OSI. Этот рисунок также иллюстрирует уровневое строение TCP/IP и показывает взаимосвязи между основными протоколами. При переносе блока данных из сетевой прикладной программы в плату сетевого адаптера он последовательно проходит через ряд модулей TCP/IP. При этом на каждом шаге он доукомплектовывается информацией, необходимой для эквивалентного модуля TCP/IP на другом конце цепочки. К тому моменту, когда данные попадают в сетевой адаптер, они представляют собой стандартный кадр той технологии, к которой относится данный адаптер. Программное обеспечение TCP/IP на приемном конце воссоздает исходные данные для принимающей программы путем прохождения кадра в обратном порядке по набору модулей TCP/IP.

    Лучшие статьи по теме